¿aG¶ïùJ¶æDAšg%\$|H è| μ Ö"´| å D

¿a]\±atSZ"4J0 Ñå¿«µwíüÍ›Q

O¬y[î ~−úÉy ° ~ {y « E ~ b > y ÒË ~ ^{, a}y ¿ ~ G y¹%

[†];aG¶ïùJ¶æ ^{††};aG¶G¶Ã\úMJ¶Z€J

Spatial distribution of SiO₂ flux in Ikuchijima Island, Hiroshima Prefecture.

Toyomitsu SHIGE-EDÅ, Shin-ichi ONODERÅ, Mitsuyo SAITO**, Koji YOSHIDA**, Tsutomu TAKEf*, Takaki MINE*

> * Faculty of Integrated Arts and Sciences, Hiroshima University ** Graduate School of Biosphere Sciences, Hiroshima University

Abstract : To clarify topographic effects on dissolved SiO

NВO ñ < ú s r 1 w ! = > Ì ⁷Qxz ‰ ° UBM { SZ"O'+íwÌ \$ {fwhŠz +ÌwK"Ì: a tGVsè¹→t… b• w®L Moz • \$ A ¼ U v ¬ w = ¶ ‡hz\\pxz VK v¬→0Åg æf`z¤v∣¬tSZ">©z< w)Ϋ→–^X h { yÐ*v¬t∣MΦ [> |•>Êz¼a¢ pK"¢\$ £ ÆpK"z9†—Í w>©g Эx N p K " { ÆbM²taw hŠzz wv v ¬ ' " z ± \$ v ¬ Ø u Xzv¬⁻ U-^XsloM {v¬w• xĺvU••<u>z¤</u> . vT'<vtTZo"Ý∙Užè`o ^'•z"Ý•üØ→¤útL% U üĺ`oM"{‡hzl•°•¬xV K U¿Xüĺ`oS"z¤v¬w, k•íxq <tVK pK"{VK xz q`otó→xaŠqb"Ž w-Žíút'"ÏR^•zy íú›"qcer‡sM yq•Đ*xz \ **±** v¬\$pæ LNZ х v¬tSZ ¬7ĝ

¬ ÕSzv¬B+S>Ôb{¤v¬w• ØCxz w:(•\$>;Mo{Šh{\\pz} $v < m x v \neg w O \pm T' v \neg w 7 \hat{o}^a \hat{o} t^2 T l o w i' m w \backslash q \rangle \hat{O} b$ lìzxv¬w7ô^a $\hat{o} \cdot v < mp \dagger \hat{o} \{ \check{S}h \cdot wpz$ fwv¬wv¬ $\acute{E}^{-} wG - \hat{O} \hat{h} \cdot wpK'' \}$ thzv ¬ ÕSxv¬ Ý→^{-~}b¦ªq`oz Š`;Mh{ \•xv¬Øu→v<'mwËĐp†`h <q`o [`z o•v<'mph"wv¬ïwzp)™⁻b"{ fwhŠz \w(U-^M,rv) $\neg w \dot{Y} U | X s" \ddot{A} \rightarrow \hat{O} b \{ O'B + S x z \sim \hat{I} i B + \gamma Q w | a q o z \check{S} - ; h \{ \langle V \rangle \} \}$

Tð907p•@7@•{.)ez′p÷`ÚÁ\$%eð6-9@00@Xµ**54/2Ø¢À9P-7€1/66€**€/Tó/MzhveS33b0EEÔ¢/W2Å27pfqp•€LB6E'•ÎT⁄0XÄ0Y¢tD9\"0Y¢ÍwO\$5Uv¬E

```
y¤v¬tSZ"• ØC v¬Øuzv<'mzv¬7ôªôzlìzz"Ý•<sup>-</sup> z••<sup>-</sup> z"Ý
```

•Øuz"Ý•Øupzv¬ ÕSzO'B+S

Sampling	Catchment	Longitudinal	Catchment	Streamberd	luvial fan	Mountain	Alluvial fan	Alluvial fan	Prolate degree	Water convergence
point	area(ha)	distance(km)	altitude(km)	gradient	gradient	and gradient	area(ha)	ratio	of catchment	degree of catchment
IK1	247.84	3.15	0.40	0.13	0.04	0.24	71.00	0.29	0.25	1.97
IK2	245.00	3.20	0.40	0.13	0.05	0.38	75.42	0.31	0.24	1.91
IK3	54.60	142.	0.22	0.15	0.06	0.44	29.30	0.54	0.27	1.75
IK4	28.08	1.53	0.28	0.18	0.04	0.29	14.02	0.50	0.12	0.66
IK5	266.00	2.75	0.41	0.15	0.06	0.38	98.18	0.37	0.35	2.38
IK6	30.95	1.28	0.22	0.17	0.09	0.46	7.48	0.24	0.19	1.10
IK7	33.06	1.30	0.35	0.27	0.09	0.58	8.39	0.25	0.20	0.73
IK8	44.72	1.34	0.41	0.30	0.12	0.58	20.71	046.	0.25	0.82
IK9	108.50	1.98	0.37	0.19	0.09	0.61	40.10	0.37	0.28	1.48
IK10	39.68	1.38	0.37	0.27	0.12	0.51	23.57	0.59	0.21	0.78
IK11	39.68	1.65	0.39	0.24	0.09	0.55	22.08	0.56	0.15	0.62
IK12	20.03	1.14	0.17	0.15	0.09	0.44	16.33	0.82	0.15	1.03
IK13	52.27	1.31	0.45	0.34	0.19	0.56	18.13	0.35	0.30	0.90
IK14	77.22	1.89	0.45	0.24	0.14	0.38	17.18	0.22	0.22	0.92
IK15	45.33	1.23	0.10	0.08	0.03	0.28	17.31	0.38	0.30	3.70

Catchmentare流域面積 Catchmentaltitud硫域最高標高 Alluvial fan gradient扇状地勾配 Alluvial fan area扇状地面積 Prolatedegree of catchme流域偏長度***

*:流域の河口から最高標高に向かっての谷距離 *・:流域の平均勾配 **・:流域形状を表わす指標として提案し用いた

****:三次元的集水特性の指標として提案し用いた

Longitudinal distanc硫下距離^{*} Streambed gradie起伏比* Mountain land gradien曲地勾配 Alluvial fan ratio:扇状地面積率 Water convergence degree of catchm 商城集水度**** &\$ z+9>`h{>+`h±ïÓçxîgètËjTQ"z NÝïÒèïÑŸç»" p¤a`hwjz*\$1C«üs÷">;Mo4JñS>`h{‡hz4J0 tx{Ý4J0 q9 4J0qU Ob"Uz¤a™w¼‰>;MoM"\qT'\\p"`h4JñSx"...96pK "q>`h{bs~jz=¶\$é=^;wMt9Z`h4J0 pK"qßQ'•"{\whŠzŽ <Šæ¤pxz4J0 >9 4J0 q`o{O<wqb"{

™} A L q ß o

™ – − O'v ¬ w 4 J 0 ñ S t | Ñ å ¿ « µ w ! ^ y ¤ v ¬ t S Z " O' + w 4 J 0

98

Sw Rtxz v¥ ⁻ t'"+µ tw€ îÌ iZpsXz ¤v¬wTÚw°^t'"€ îÌz∖úÆ^zL% tSZ"ª,wè¹s r¤v¬w• ØCT'px~'•sM 7sA ¼ U ó v t)` o M " q ß Q ' • h { Žĺw∖ qT'zlìzp^{-~}^•"v¬w É⁻ xz $v \neg ^{o} p w \bullet < + v Z " w | ^{a} q s " z$ - U x ts",,rO'v"xÿ<`z ALq`oo•v ¯uph"w4J0 Ñå¿«µ⟨-^Xslh $\langle q U \neg Y p V h \{ M z v \neg w = \P \} e = ^;$ w§S>ÔbO'+w4J0 ñSxzv¬w• iZpxsXz 7 s A ¼ t'"óvt)` > ^•"\qUÔ&^•h{ тм O'v¬w4J0Ñå¿«µq~ĺi\$• A ¼ q w уу y²...pxz¤v¬tSZ"ØËĺi•→ $Qz \bullet - Qqv \neg tSZ"4J0$ Ñå¿«μ gw tmMoz Ëĺi\$A¼t'"/)^∙ "O'v"t§Xè¹>!Z"\qU¬Ý^• h{f\pz ... px¤v¬tSZ"~ĺi• \rightarrow QUv¬tSZ"o•v¬Øuph"w 4J0 Ñå¿«µtt...bè¹tmMo^æb"{ 11 $p x z \sim \hat{1} \hat{1} B + \hat{Q} w \hat{1}^{a} q \hat{O} z O'B +$ S> Š`−;`h{Ëĺi• >Qpxzlì z U - ^ X s " " r O ' • w • < + v Z " U ÿ C b"{bs~jzO'wB+SUÿCb"\qt s"{ 'loz B+Sxlìzwo:tz«b"{ thz ØËĺi\$→ÃpK"v¬wv¬ ÕS $U G V X s " q v \neg w v < ' m t 0 b " i w z p$ ‹GVXs"hŠO'âUCa`z B+S (v C b"\qts"{\w\arrowlizwo: qv¬ ÕSwup [`h{ \$ B Ctf•q• O'B+Sqo•v¬ØuKh"wO'v"z 0 •v¬Øuph"w4J0 Ñå¿«µqw Ôb{\$ BT'O'B+Sqo•v¬Øuph "wO'v"qw txÌŽsì U^'• "{±hz\wì xz\$ Cz\$ BzCt SZ"¤Ëĺi\$• A¼qo•v¬Øuph" w O ' v " q w '" (̬ρK" { \w\a $T'z v \neg w \bullet < + x \sim \hat{I}i\$B + OUGVM$

v¬tSMoz'"O'tvZb"\qU~T"{^'tz\$ CT'O'B+SUGVMv¬"r o•v¬Øuph"w4J0 Ñå¿«µUGVXzO'B+SU-^Mv¬"ro•v¬Øuph" w4JÑå¿«µU-^Xs"qMOì U^'•"{\w\qxzv¬w~ĺi\$B+>Q UGVMqzfwv¬wO'v"UÿC`z=¶\$é=^;w§SUGVXs"\q>Ôb{‡hz \wì xO'v"q‰7tz ¤Ëĺi•A¼qw '"‹l¬pK"{ sSzO'B+S qO'+w4J0 ñSqw txì x^'•sM\qT'z\w¦ªx:yì >†ìb"‹wp xsMqßQ'•"{

š ‡qŠ

- yŠZ€pxz I•°, •¬wVK ••-v¬tSMoz v¬w=¶\$é=^;tt...b• wè¹›Ì'Ttb"\q>è\$q`h{\\pxz w-v¬pO'+w>+t|v" z> `h+¼‰w9 4J0 ñS> "`h{fwALŽ<w\qUÌ'TtsIh{ £y>9zñ+"srw>©ÚEzS'|< U‰apK"-v¬tSMoxzo•v¬Øuph "w4J0Ñå¿«µqzo•v¬Øuph"wO'v"qw tÌŽsì U^'•h\ qT'z o•v¬Øuph"wO'v"xz v¬wo•v¬Øuph"w4J0 Ñå¿«µt<l q<§Xè¹›)Q"qßQ'•"{ £yv¬Øuz"Ý•Øuzv¬ ÝtE⁻^•" ØËĺi\$s>Qxzo•v¬Øuph"w 4J0Ñå¿«µqw tì U^'•sTIh\qT'z=¶\$é=^;w§StxÚ€\$t xè¹›)QoMsMqßQ'•"{ £yv¬¶.w É\$s⁻>Ôblìzxz O'•w•<+vZw¦ªqs"O"Uz :yÌ z
- bs~jzO'+w4J0 ñSw¦ªqxs"QsM{\•xzv¬tSZ"O'+w4J0 ñS U 7\$sA¼t'"> ^•oM"\q>Ô&b"{ fwhŠz B...!=t'"O'+w4J0 ñSw!^‹ß€tM•"žAUK"{

 $fy = \P$ \$ $e = ^; t7 < e^1 >$ Q O " o • v ¬ Ø u p h " w O ' v " x z l ì z q w o : q v

¬ ÕSwup^{-~}^•"v¬ 6tSZ"~ĺi\$B+›Qq7‹Ì¬sì ›Ô`h{

ууууу

уÙ

yŠZ€>æOtKh"z >+zv" z q•Ð*t] — MhiMh¶\î6€C t Xò •`‡b{ sSzŠZ€x æJ¶²J¶Z€...,k" E⁻ ñ,Y →-;`oælhZ€w°æ pK"{

¾; Y

n, Y
•v ¬ w + • í ¥ q ú í e
• • í U ù ‰ ³ ï Ù ´ ¢ Ü
Hans, J. (1941) Factors of Soil Formation, McGraw-Hill Book Company, New York, 281pp.
Hewlett, J. D. (1964) Principles of Forest Hydrology. The University of Georgia Press Athens, Georgia 30602.
• « í è 9~G > y < w ŽQ9÷¤tSZ"§æÕtw9r S
• í U ù ‰ ³ ï Ù ´ ¢ Ü
° s m²
Ž w é = q f w \ R ú T w = ¶
B å = ¶ ï † / P

" +¶ ×µ∙g¶è2 GÌŠ QQ

Likens, G. E. and Bormman, F. H. (1995) Biogeochemistry of a Forested Ecosystech)(&pringer-Verlag, New York, 159p.

Moldan, B. and Cerny, J. (1994) Biogeochemistry in small catchments. John Wiley & Sons, Chichester. 419pp.

{y « $E \sim - \hat{u} \acute{E} y \circ \sim \hat{a} y ; \sim b + y \acute{U} i ¢$ £ $I \bullet \circ$, $-O' t S Z " \overset{3}{Z} Q$

ÉÛY"µL% Øu~w'~"Ý•w®Lµ|¿aG¶ïùJ¶æDAšyH è

Semkin, R. G. et al., (1994) Hydrochemical Methods and Relationships for Study of Stream Output From Small Catchment. Biogeochemistry of Small Catchments Chapter 7. John Wiley & Sons, 163-187.

White, A. F. (1995) Chemical weathering rates of silicate minerals, Reviews in Mineralogy, 31, 407-461.

103