2023年10月,2024年4月入学(October 2023 and April 2024 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

Question Sheets

(2023年8月24日実施 / August 24, 2023)

			,	0 / 3 - 1 / 1 / 2 / 1 / 2	
	社会基盤環境工学		社会基盤環境工学	受験番号	
試験科目	(専門科目I)	プログラム	Civil and	Examinee's	M
Subject	Civil and Environmental	Program	Environmental	Number	
-	Engineering I		Engineering	Transco	
	F F				

試験時間:9時00分~11時30分 (Examination Time: From 9:00 to 11:30)

受験上の注意事項

- (1) 問題用紙は表紙を含み24枚、解答用紙は表紙を含み8枚あります.
- (2) これは問題用紙です. 解答は別冊の解答用紙に記入してください.
- (3) 問題用紙の表紙及び解答用紙の全頁の指定した箇所に、受験番号を記入してください.
- (4) この冊子はばらしてはいけません. 一部でもばらけてしまった場合には, 直ちに試験監督に伝えて指示に従うこと.
- (5) 選択する科目を、下欄の表に〇印を付して表示すること、ただし、選択する科目は、出願時に登録した科目と 相違してはならない。
- (6) 1問につき解答用紙1枚を使用すること、解答が書ききれないときには、同じ用紙の裏面を利用してもよい、ただし、その場合は「裏に続く」などと裏面に記載したことが分かるようにしておくこと、
- (7) 問題用紙は解答用紙とともに回収します.
- (8) 問題中「図を書きなさい」という指示がある場合は、解答用紙に記入すること。
- (9) 貸与する定規、電卓を使用しても差し支えない、
- (10) 質問あるいは不明な点がある場合は挙手をすること.

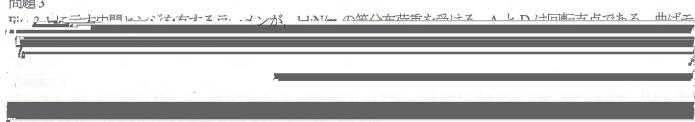
Notices

- (1) There are 24 question sheets and 8 answer sheets each including a cover sheet.
- (2) This examination booklet consists of only question sheets. Use the other booklet for answers.
- (3) Fill your examinee's number in the specified positions in both booklet covers and each answer sheet.
- (4) Do not disband this booklet. If the sheet has been disbanded accidentally, tell an invigilator and follow his/her instruction.
- (5) Mark the specialized subject that you have selected, with a circle in the Selection row in the table given below. The specialized subject which you mark must be the subject that you registered in the application.
- (6) Use an individual answer sheet for each question. If the space is not enough, use the other side of the sheet and write down "to be continued" on the last line of the sheet.
- (7) Return the question sheets together with the answer sheets.
- (8) When you are required to draw a diagram, draw it on the answer sheet.
- (9) You may use the approved ruler and calculator.
- (10) Raise your hand when you have any questions.

Γ	科目	構造工学	コンクリート工学	地盤工学	環境衛生工学	水理学	土木計画学
	Specialized	Structural Engineering	Concrete Engineering	Geotechnical	Sanitary and	Hydraulics	Infrastructure and
1	1			The site and the	E-minorum ontol		Transportation
		4-					

2023年10月, 2024年4月入学 (October 2023 and April 2024 Admissions)

Ę.		16 Jul 44 75 74 11 144	<u>रशास्ति । ज्ञमरमञ्जयमा /</u>	Annes 444 de la	田内田 山 一年 日 一年 日	H H
						,
10-	-					,
1						
1						
4						
(r- 1-						
/						
					ŋ	の
-						
1						
~			·			
A.						
						1
N-						
¥						
¥						al .
						1
			7			1
			b			j
T (1
(<u> </u>						1
•						
1						
*						ž.
			7			-
			l			


問題2

以下の用語について説明せよ.

- <u>- </u>	+4-4-	 		
			•	
- I				
7				
· 1				
	1]			
-				
_				
E				
71 .				
4.				

2023 年 10 月,2024 年 4 月入学(October 2023 and April 2024 Admissions) 广皇七学七学院生准理工玄科学研究科博士理程前期(一般選集) 東門科日入学試<u>驗問題</u> 社会基盤環境工学 Engineering Engineering I

問題3

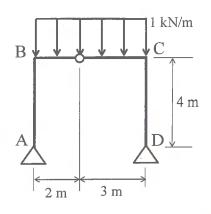
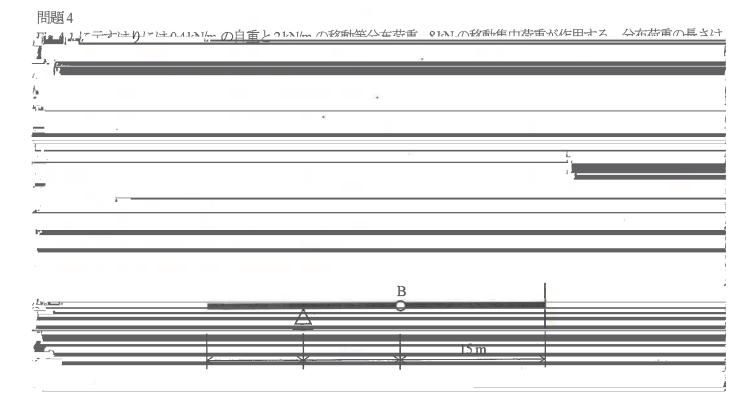
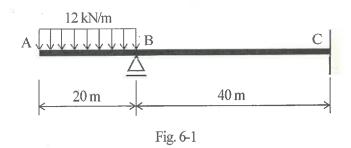



Fig. 3-1

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	構造工学 Structural Engineering
問題 5	示力 フレム A 堪 とが作けたる	舌 D 太巫 けス	立てますの一路本土な光がによって	M.C.D。 悠/子点	こわけ 360 MDo であス Cけ
	· 				
			2 m) P
	45 mm	30 mm	B -	2.25 E'	D
	x Section E-E'	<u>\\</u>	45 mm ——————————————————————————————————		


Fig. 5-1

問題6

Fig. 6-1 に示すはりが,等分布荷重($12\,\mathrm{kN/m}$)を受ける.B は移動支点,C は固定支点である.また,曲げ剛性 EI は一定である.B と C における支点反力を求めよ.

Question 6

The beam shown in Fig. 6-1 is subjected to a uniformly distributed load (12 kN/m). Assume B is a roller, and C is a fixed support. Also, the flexural rigidity EI is constant. Determine the reactions at supports B and C.

(2023年8月24日実施 / August 24, 2023)

試験科目	社会基盤環境工学 (専門科目 I)	プログラム	社会基盤環境工学 Civil and	科目 Specialized	コンクリート工学 Congrete Engineering
_				-	
_					
(,	=			- J	
(2)					

問題2

フレッシュコンクリートに関する、以下の問に答えよ.

- (1) エントラップトエアについて説明せよ.
- (2) コンクリートのワーカビリティについて説明せよ.
- (3) ブリーディングとは何か、また、ブリーディングが硬化コンクリートの性質に及ぼす影響について説明せよ.

Question 2

Answer the following questions regarding fresh concrete.

- (1) Explain the term "entrapped air" and its impacts on concrete.
- (2) Explain the term "workability" of concrete.
- (3) Explain the term "bleeding" and its effects on the properties of hardened concrete.

(2023年8月24日実施 / August 24, 2023)

試験科目	社会基盤環境工学 (専門科目 I)	プログラム	社会基盤環境工学 Civil and	科目 Specialized	コンクリート工学
					¥.
i i					

問題4

鉄筋コンクリート構造物の、中性化による劣化メカニズムについて説明せよ. さらに、新設構造物と既設構造物における代表的な中性化の対策をそれぞれ2つずつ述べよ.

Question 4

Explain the deterioration mechanism of reinforced concrete structures due to carbonation. Also, for each new and existing structures, introduce two typical measures against carbonation.

問題5

アルカリシリカ反応の劣化メカニズムならびにひび割れの特徴を説明せよ. さらに、新設構造物の設計における代表的なアルカリシリカ反応防止策を3つ挙げ、簡単に説明せよ.

Question 5

Explain the deterioration mechanism of the alkali silica reaction and the characteristics of cracking patterns caused by the reaction. Also, introduce three typical measures to prevent the reaction in the design of new structures.

2023 年 10 月 2024 年 4 月入学(October 2023 and April 2024 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

り ŋ り 社会基盤環境工学 社会基盤環境工学 科目 コンクリート工学 プログラム 試験科目 (専門科目 I) Civil and Specialized Environmental Concrete Engineering Program Civil and Environmental Subject subject Engineering. Engineering I

問題6

コンクリート構造に関する,以下の問に答えよ.

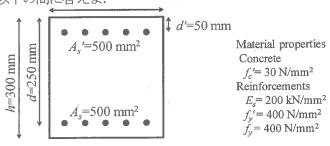


Fig. 7-1

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental	プログラム Program	社会基盤環境工学 Civil and Environmental	科目 Specialized	地盤工学 Geotechnical Engineering
Subject	Engineering I	Flogram	Engineering	subject	Geoteoniment Engineering

問題1

地盤工学における以下の用語について説明せよ

- (1) コンシステンシー限界
- (2) 全応力と有効応力
- (3) 流線と等ポテンシャル線

Question 1

Explain the following technical terms in geotechnical engineering.

- (1) Consistency limit
- (2) Total stress and effective stress

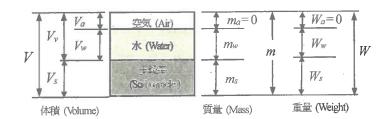


Fig. 2-1

(2023年8月24日実施 / August 24, 2023)

試験科目	社会基盤環境工学 (専門科目 I)	プログラム	社会基盤環境工学 Civil and	科目 Specialized	地盤工学
	Engineering I		Engineering		
		,			
-		L,	_		
<u>j.</u> -					
	4		= —		d

ここで, t : 時間,z : 一次元方向の距離,u : 過剰間隙水圧, c_v : 圧密係数, m_v : 体積圧縮係数(一定),k : 透水係数, γ_w : 水の単位体積重量を表す.

- (1) Terzaghi の一次元圧密方程式の導出において用いられる3つの条件と5つの仮定を述べよ.
- (2)(1)で述べた条件・仮定を用いて Terzaghi の一次元圧密方程式を導出せよ.

Question 3

Answer the following questions regarding Terzaghi's one-dimensional consolidation equation given below

$$\frac{\partial u}{\partial t} = c_v \frac{\partial^2 u}{\partial z^2}$$

in which

$$c_v = \frac{k}{m_v \gamma_w}$$

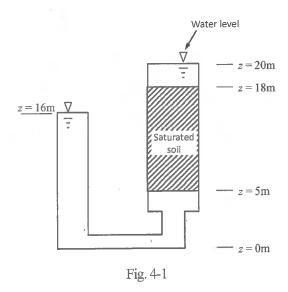
where, t is the time, z is depth, u is excess pore water pressure, c_v is the consolidation factor, m_v is volumetric compression factor (constant), k is permeability coefficient, and γ_w is unit weight of water.

- (1) Explain the three conditions and five assumptions to derive Terzaghi's one-dimensional consolidation equation.
- (2) Derive Terzaghi's one-dimensional consolidation equation considering the above requirements.

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	地盤工学 Geotechnical Engineering
-----------------	--	------------------	---	------------------------------	----------------------------------

問題4


Fig. 4-1 に変水位透水試験の概念図を示す.以下の間に答えよ.なお,土試料の断面積 $A=100~{
m cm}^2$,透水係数 $k=10^4~{
m m/sec}$,間隙率 $n=0.3~{
m とする}$.

- (1) 全水頭, 圧力水頭, 位置水頭の分布を図示せよ.
- (2) 流量 Q を求めよ.

Question 4

Fig. 4-1 schematically shows the falling head permeability test of soil. A is the cross-sectional area of the soil specimen (=100 cm²) and k is the permeability coefficient of the specimen (=10⁴ m/sec). Also, porosity n=0.3. Answer the following questions.

- (1) Draw distributions of total hydraulic head, pressure hydraulic head, and positional hydraulic head.
- (2) Calculate the flow rate Q.

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	地盤工学 Geotechnical Engineering
-----------------	--	------------------	---	------------------------------	----------------------------------

問題5

地盤震害に関する以下の問に答えよ.

- (1) Fig. 5-1 に示すすべり面に対し、水平震度 (KH) を考慮した場合のすべりに対する安全率を求める式を導出せよ.
- (2) 地震時に液状化する可能性がある場合の対処方法を示せ.

Question 5

Answer the following questions regarding the earthquake damage of ground.

- (1) Fig. 5-1 schematically shows a typical land slide caused by an earthquake of maximum horizontal acceleration (KH). Derive an equation for the safety factor with respect to the earthquake.
- (2) Introduce typical countermeasures against liquefaction caused by an earthquake.

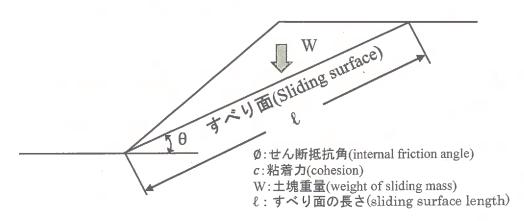


Fig. 5-1

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	地盤工学 Geotechnical Engineering
-----------------	--	------------------	---	------------------------------	----------------------------------

問題6

Fig. 6-1 に示す鉛直載荷試験の結果から得られる荷重と沈下の関係をもとに地盤の支持力について説明せよ.

Question 6

Explain the bearing capacity of ground using the relationship between load and settlement obtained from the vertical loading test results as shown in Fig. 6-1.

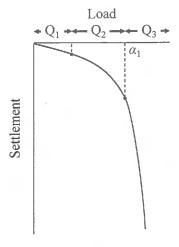


Fig. 6-1

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	環境衛生工学 Sanitary and Environmental Engineering
-----------------	--	------------------	---	------------------------------	---

問題1

- (1) 次の専門用語を説明せよ.
 - (a) 赤潮
 - (b) COD
 - (c) バイオレメディエーション
- (2) 水環境測定における流量比例コンポジットサンプリングを説明せよ.
- (3) 貧栄養の湖沼では夏に藻類の増殖が抑制される場合がある. その理由を底泥からの栄養塩の溶出と関連づけて説明せよ.
- (4) 大気汚染において NOx の低減が困難な理由を説明せよ.

Question 1

- (1) Explain the following technical terms.
 - (a) red tide
 - (b) COD
 - (c) bioremediation
- (2) Explain the flow-weighted composite sampling method for the monitoring of water environment.
- (3) In oligotrophic lakes, algal growth is occasionally suppressed in summer. Explain the reason for it by considering nutrients release from the bottom sediments.
- (4) Explain the difficulty for decreasing NOx in air pollution.

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	環境衛生工学 Sanitary and Environmental Engineering
-----------------	--	------------------	---	------------------------------	---

問題2

ある河川で有害物質 X が SS 吸着態(懸濁態)と溶存態の両方から検出された.溶存態の X の濃度は $500\,\mathrm{ng}\,\mathrm{L}^1$,また懸濁態の X の濃度は $5\,\mathrm{ng}\,\mathrm{L}^1$ であった.SS 濃度は $5\,\mathrm{mg}\,\mathrm{L}^1$ であった.以下の問に答えよ.

- (1) X の SS あたりの濃度 ($\mu g k g^{-1} SS$) を求めよ.
- (2) X の SS あたり含有量の溶存態濃度に対する比 K (($\mu g k g^1 SS$) / ($\mu g L^1$)) を求めよ.
- (3) K は流下に伴い平衡値 K_{eq} (=1 \times 10 5 ($\mu g k g^{-1} S S$) / ($\mu g L^{-1}$))に近づいていくと考えられた、懸濁態と溶存態の濃度は流下に伴い増加,減少いずれの傾向を示すと考えられるか、ただし物質 X, S S ともに希釈や分解はなく流下に伴い S S 濃度および物質 X の合計濃度は変わらないものとする.

Ouestion 2

Toxicant X was detected in both particulate (adsorbed in SS) and dissolved phases at a point in a river. The detected concentration of toxicant X was 500 ng L^{-1} for dissolved phase and 5 ng L^{-1} for particulate phase. The SS concentration was 5 mg L^{-1} . Answer the following questions.

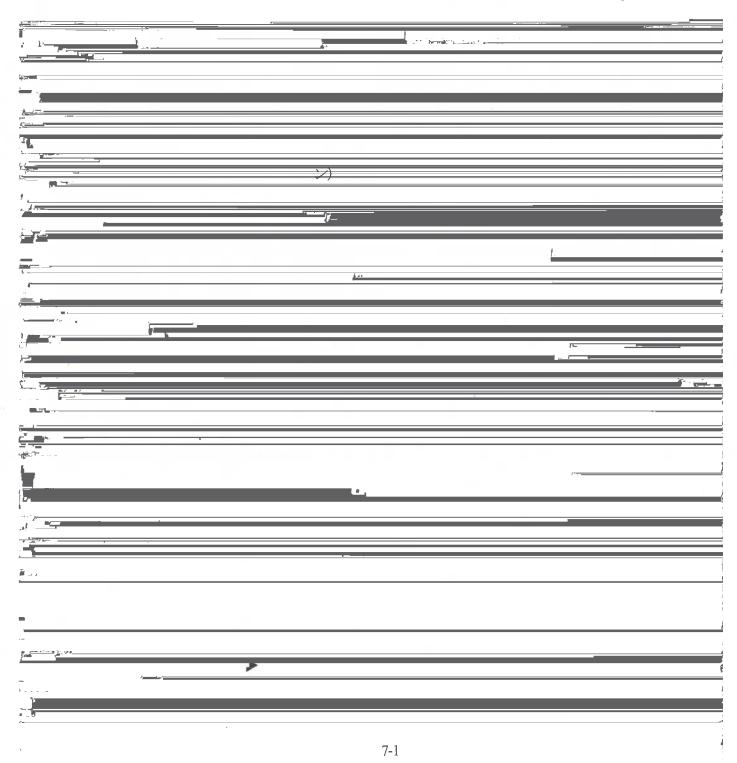
- (1) Calculate the toxicant X content in SS (μg kg⁻¹ SS).
- (2) Calculate the ratio K of "the content in SS" to "dissolved phase concentration" (($\mu g \, kg^{-1} \, SS$) / ($\mu g \, L^{-1}$)) for the toxicant X.
- (3) The K was considered to approach its equilibrium value ($K_{eq} = 1 \times 10^5$ (($\mu g \ kg^{-1} \ SS$) / ($\mu g \ L^{-1}$)) as water flows downstream. Do the particulate and dissolved concentrations tend to increase or decrease as the water flows downstream? For the estimation, assume that there is no degradation or dilution of SS and toxicant X, and their total concentration does not change with river flow.

	社会基盤環境工学	社会基盤環境工学	1四上七八年,
(E			
R.	<u>*</u>		
11.			
15		100	
1-1-1-1			
(1)	·		
1			
17.5			
-			
1			
			9 i T

(2023年8月24日実施 / August 24, 2023)

社会基盤環境工学 社会基盤環境工学 環境衛生工学 科目 プログラム 試験科目 (専門科目 I) Civil and Sanitary and Environmental Specialized Environmental Subject Civil and Environmental Program Engineering subject Engineering The prince and the L

問題5


COD 濃度 $5,000 \,\mathrm{mg}\,\mathrm{L}^1$ の排水を有効容積 $10 \,\mathrm{m}^3$ のバイオリアクターで嫌気処理することを考える。このリアクターは処理性能が $9 \,\mathrm{kg}\,\mathrm{COD}\,\mathrm{m}^3\,\mathrm{d}^1$ であり,処理水の COD 濃度を $500 \,\mathrm{mg}\,\mathrm{L}^1$ 以下で運転する。また,発生するバイオガスのメタン濃度は 70%である。以下の問に答えよ。

- (1) COD 除去率 [%] の最小値を求めよ.
- (2) 許容できる最大 COD 容積負荷 [kg COD m³ d¹] を求めよ.
- (3) 許容できる最大処理水量 $[m^3 d^1]$ を求めよ.
- (4) 許容できる最小水理学的滞留時間 [d] を求めよ.
- (5) メタンの COD 当量 [Nm³ CH₄ kg¹ COD] を示せ.
- (6) 1日に発生する最大のバイオガス量 [Nm³ d¹] を計算せよ.

Question 5

A wastewater with a COD concentration of 5,000 mg L^{-1} is treated anaerobically in a reactor with an effective volume of 10 m^3 . The reactor's COD removal potential is 9 kg COD m⁻³ d⁻¹, and it operates with an effluent COD concentration of $\leq 500 \text{ mg L}^{-1}$. The

reactor	5 COD TOMOVAL P			 	
~~					
				<u>=</u> .	
4	4				
			¥ 17		*
F					4
			2		
27					
j					<u> </u>
1					
i i					
4,	1				
	1.	_			
1					
ı					
b					
,					
a 5					

(2023年8月24日実施 / August 24, 2023)

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	水理学 Hydraulics
-----------------	--	------------------	---	------------------------------	-------------------

問題1

内半径 R, 高さ Hの円筒容器に一定の深さ h。の水が入っている。この容器を、Fig. 1-1 のように円筒中心軸 z 回りに十分長い時間、角速度 ω で回転させる。以下の間に答えよ。

- (1) 容器の底が現れず、水も溢れていない定常状態における半径 r 方向の水深分布 h(r)を求めよ.
- (2) 容器から水が溢れ、容器中心に半径のの円状に底が現れる定常状態ののを求めよ.

Ouestion 1

A cylindrical container of inner radius R and height H contains water of the constant depth h_0 . The container is rotated around the cylindrical center axis z at an angular velocity ω for a sufficiently long time, as shown in Fig. 1-1. Answer the following questions.

- (1) Find the water depth distribution h(r) in the radial direction r for the steady state when the bottom of the container does not appear and the water does not overflow.
- (2) Find ω for the steady state in which water overflows from the container and the bottom appears in a circle of radius r_0 from the center of the container.

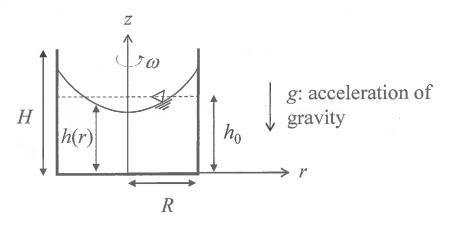
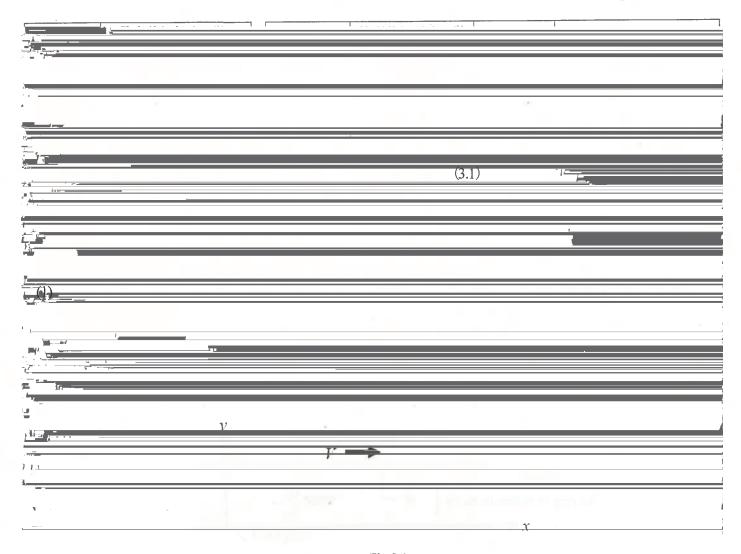
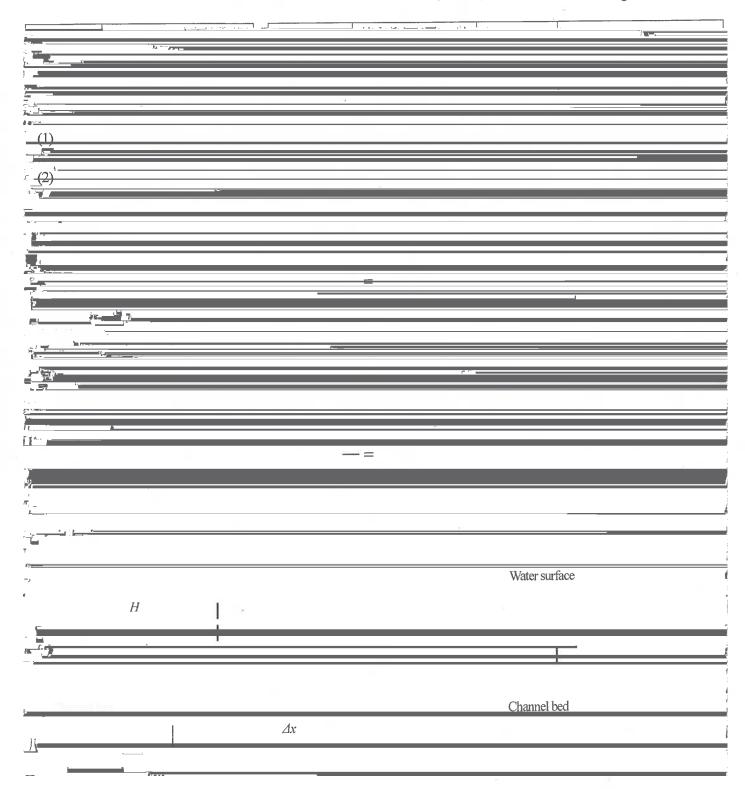
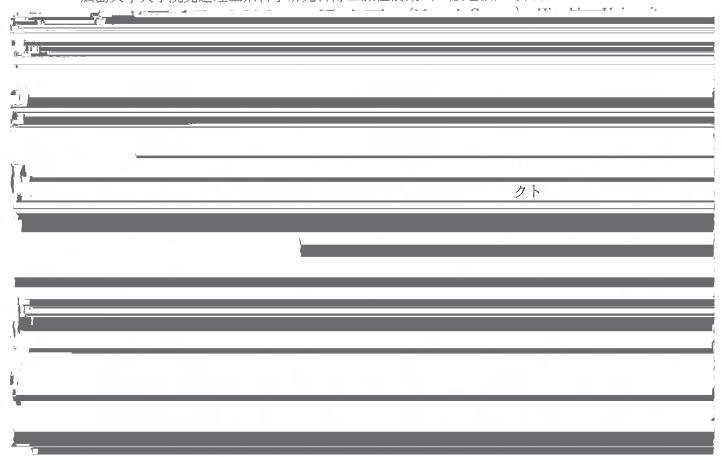


Fig. 1-1

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	水理学 Hydraulics
-----------------	--	------------------	---	------------------------------	-------------------

直径D=0.5r							
1.							
	ar again	* 2511,712	273242 XXX		audius Talandagi		T 40 000
. ^		. Single				M	11,10
76				m more present			
	H H H		- II				
				▗▗▙▄▗▃▐▋▋▊ ^{▗▘} ▗▐ ▘▘▀▘▖▗▘▐▋▘▗▗▗▗		<u>alformation</u>	
			" m	M 47, 10 M 10 M	" "	" " " " " " " " " " " " " " " " " " "	· · · · · · · · · · · · · · · · · · ·
						0. 1	
				. ×		luse" .	C 2000
ll x m ii	II II 388			111111111111111111111111111111111111111			
× n	II II 388	8688.61				,	
	II II 388	8688.61					
	II II 388	1887.25°					
	II II 388	1887.25°					20000000
	II II 388	1887.25°					
	II II 388	1887.25°					***************************************
	II II 388	1887.25°					
	II II 388	1887.25°					
	II II 388	1887.25°					
	II II 388	1887.25°					
	II II 388	1887.25°					
	II II 388	1887.25°					20000000
	II II 388	1887.25°					


Fig. 3-1

試験科目 Subject	社会基盤環境工学 (専門科目 I) Civil and Environmental Engineering I	プログラム Program	社会基盤環境工学 Civil and Environmental Engineering	科目 Specialized subject	水理学 Hydraulics
-----------------	--	------------------	---	------------------------------	-------------------

	Engineering I	Engineering	3		,
問題5					
	Andrew Comments and Comments an	6 Pets			
					7-1-7-
(u.					
-				v	

2023年10月,2024年4月入学(October 2023 and April 2024 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題2

Table 2-1 の A 市の拡張版産業連関表を用いた自動車のライフサイクルアセスメントに関する以下の間に答えよ.機能単位を 100 万円/台とする.システム境界として材料製造段階,自動車製造段階,自動車使用段階を対象とする.ただし自動車使用段階の 1 台当たりの CO_2 排出量は 1 t- CO_2 /台とする.

- (1) レオンチェフの逆行列を求めよ.
- (2) 自動車1台分の需要による材料製造産業と自動車製造産業の波及生産額を求めよ.
- (3) 材料製造産業と自動車製造産業のCO₂排出係数(t-CO₂/million JPY)を求めよ.
- (4) 自動車のライフサイクル CO₂ 排出量 (t-LCCO₂/台) を求めよ.

Question 2

Answer the following questions regarding life cycle assessment of automobiles based on the expanded input-output table for city A in Table 2-1. The functional unit is 1 million JPY / vehicle. The system boundary covers material production stage, automobile production stage, and automobile use stage. The CO₂ emission for automobile use stage is 1 t-CO₂/vehicle.

- (1) Calculate Leontief inverse matrix from Table 2-1.
- (2) Estimate the spillover outputs of material production and automobile production by the demand for one automobile.

Table 2-1

	16	101C Z-1		
	Material production	Automobile production	Household	Outputs
Material production (million JPY)	100	. 100	0	200
Automobile production (million JPY)	0	0	1,000	1,000
Household (million JPY)	100	900		
Inputs (million JPY)	200	1,000		
CO ₂ emission (t-CO ₂)	800	250		

試験科目	社会基盤環境工学 (専門科目 I)	プログラム	社会基盤環境工学 Civil and	科目 Specialized	土木計画学 Infrastructure and
, p*					
	<i>y</i>	_			
1					
The second of th			,		
Fair A					
n fr					,
-					
問題 5	供給曲線に関する以下の問	乳ァダ ラ ト			
			STOP I SHARE FITTER	<i>1⊢/4</i> -10	※無本文法』 チェティドサスキ
) <u> </u>				
					3 w 4
(3)					

2023 年 10 月,2024 年 4 月入学(October 2023 and April 2024 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

問題用紙

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

Question Sheets

(2023 年 8 月 24 日実施 / August 24, 2023)
社会基盤環境工学
社会基盤環境工学
り

2023年10月, 2024年4月入学 (October 2023 and April 2024 Admissions)

試験科目 Subject	社会基盤環境工学 (専門科目 II) Civil and Environmental	プログラム Program	社会基盤環境工学 Civil and Environmental	科目 Specialized subject	小論文 B Essay B
A STATE OF THE STA	**************************************				4
I.					
					,
-					
			:		