広島大学大学院先進理工系科学研究科理工学融合プログラム (環境自然科学分野) (博士課程前期) 入学試験(令和4年1月実施) Transdisciplinary Science and Engineering Program

	受	験	番	号		
E	xam	inee	's Nu	ımb	er	
M			<i>(</i>			

(Pajrinonmontal and Natural Sciences)

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination (January 2022)

問題用紙 General Selection Specialized Subject

1. 領域 $D = \{x + y \le 1, x \ge 0, y \ge 0\}$ 上の2重積分,

$$I = \iint_D \operatorname{Arctan} \sqrt{\frac{y}{x}} dx dy$$

Question Sheet

について, 以下の問いに答えよ。

- (1) 積分領域をx-y 平面図に示し、その領域にハッチングをつけ、かつ、x、y 軸上の数値を記入せ
- (2) $x = (r \cos \theta)^2$, $y = (r \sin \theta)^2$ の変数変換を行う際の、ヤコビアン行列式を求めよ。 なお, $(x,y) \rightarrow (r,\theta)$ の変数変換におけるヤコビアン行列式 J は、以下の通り与えられる。

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}$$

(3) 2重積分 I を求めよ。

Answer the following questions about the double integral I on the region $D = \{x + y \le 1, x \ge 0, y \ge 0\}$.

$$I = \iint_D \operatorname{Arctan} \sqrt{\frac{y}{x}} dx dy$$

- (1) Show and hatch the domain of the integral on the x-y plane and express numerical values on the x and yaxes.
- (2) Convert the variables with $x = (r \cos \theta)^2$, $y = (r \sin \theta)^2$, then calculate the Jacobian determinant, J. Note that the Jacobian determinant can be written by the following fomula for the coodinate transformation, $(x, y) \rightarrow (r, \theta)$.

$$\begin{array}{c|c} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \end{array}$$

広島大学大学院先進理工系科学研究科理工学融合プログラム (環境自然科学分野) (博士課程前期) 入学試験 (令和4年1月実施) Transdisciplinary Science and Engineering Program

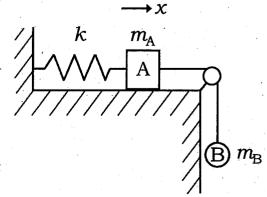
	受	験	番	号	
E	xam	inee	's Nu	ımber	
M					•

<i>(</i> T	7	 J_NI-4	1	0

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination (January 2022)

問題用紙

専門科目


一般選抜

Question Sheet

Specialized Subject

General Selection

- (1) 物体 A と物体 B がつり合いの位置にあるときのばねの 伸び xo を求めよ。
- (2) 物体 B をつり合いの位置から d だけ引いて放したとき、物体 A は単振動する。この際の物体 A の運動方程式及び一般解を求めよ。
- (3) 初期条件 x(0)=d, x'(0)=0 を満たす解を求めよ。
- (4) 物体 B をつり合いの位置から引く距離 d が大きくなり、張力が $T \ge 0$ を満たさなくなると、物体 A は単振動しなくなる。物体 A が単振動できる限界の距離 d を求めよ。

広島大学大学院先進理工系科学研究科理工学融合プログラム (環境自然科学分野) (博士課程前期) 入学試験(令和4年1月実施) Transdisciplinary Science and Engineering Program

Examinee's Number \mathbf{M}

験 番

묶

(Environmental and Natural Sciences).

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination (January 2022)

問題用紙

門科目

受

Question Sheet

Specialized Subject

General Selection

3. 状態 1 (0.1 MPa, 300 K) にある空気 1 kg を定圧で 600 K まで加熱して状態 2にし、さらに定温で1 MPa まで圧縮して状態3にした。この変化について以 下の問い(1)~(4)に答えよ。ただし、空気は理想気体とし、そのモル質量は 0.0288 kg/mol, 0.1 MPa における定圧比熱は 1 kJ/(kg K)とする。また、一般気体定数 を 8.31 J/(mol K)とする。必要なら表 1 と次式を利用せよ。

 $\log_e x = 2.303 \log_{10} x$

- (1) この空気の状態 1, 2, 3 における体積を求めよ。
- (2) 状態 1 から状態 2 に変化した時に空気が得る熱と仕事を求めよ。
- (3) 状態2から状態3に変化した時に空気が得る熱と仕事を求めよ。
- (4) 状態 1 から状態 3 への変化に伴う空気の内部エネルギーの変化量を求めよ。

常用対数表/ Table 1 Common logarithm values

x	$\log_{10} x$	
2	0.301	
3	0.477	
4	0.602	
5	0.699	İ
6	0.778	
7	U 812	

•		 '		
—————————————————————————————————————	1			
				
<u> </u>			· (100-1	
			,	
,				
, <u>, , , , , , , , , , , , , , , , , , </u>				
·. ·				
·				
<u>~</u>				
i _{7.}				
.j				
•				
<u> </u>				
			•	
			4	

広島大学大学院先進理工系科学研究科理工学融合プログラム

(環境自然科学分野) (博士課程前期) 入学試験(令和4年1月実施)

Transdisciplinary Science and Engineering Program

(Environmental and Natural Sciences),

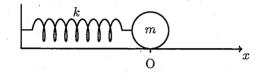
Graduate School of Advanced Science and Engineering (Master's Course) , Hiroshima University

Entrance Examination (January 2022)

問題用紙

専門科日

一般選抜


受験番号 Examinee's Number

Question Sheet

Specialized Subject

General Selection

1. 質量m のおもりが図のように床に水平に置かれ、バネ定数k のバネによって壁に取り付けられている。おもりは質点とみなすことができるとする。バネが自然長であるときのおもりの位置を原点とし、バネの伸びる方向にx 軸をとる。

まず、おもりおよびバネに働く摩擦が無視できる場合を考える。

- (1) 時刻 t におけるおもりの位置を x(t) とする。x(t) の微分方程式として運動方程式を書け。
- (2) 運動方程式の一般解を求めよ。ただし、固有角振動数 $\omega_0 = \sqrt{k/m}$ を用いよ。

次に、おもりにその速度vに比例する抵抗力-bvが働くとする。ただしbは正の定数で $b/m \ll \omega_0$ とする。

- (3) 運動方程式を書き、質点の位置 x の一般解を求めよ。
- (4) 初期条件 x(0) = 0、 $v(0) = v_0$ を与えた場合の x(t) を求め、その概形をグラフにせよ。

さらに上記抵抗力に加えて、外力 $F(t)=F_0\cos(\omega t)$ がおもりに働くとする。ただし F_0 、 ω は正の定数とする。

- (5) 運動方程式を書き、その特解を求めよ。長時間経過後にはこの特解がx(t)の振る舞いを決定する理由を述べよ。
- (6) 特解の振幅を外力の角振動数 ω の関数としてグラフに表せ。また、そのグラフを用いて共鳴現象について説明せよ。

広島大学大学院先進理工系科学研究科理工学融合プログラム (環境自然科学分野)(博士課程前期)入学試験(令和4年1月実施) Transdisciplinary Science and Engineering Program (Environmental and Natural Sciences),

Ex	② an	:	映 ee'	畬 s N	um	bei	
M							

Graduate School of Advanced Science and Engineering (Master's Course) , Hiroshima University

Entrance Examination (Jan	ualy 2022)	
問題用紙	専門科目 [一般選抜]
Question Sheet	Specialized Subject	General Selection
2	「小佐小小に間はいみとなった。 佐江田岳の	7. 小类 Mr. 17 四. 1. 12
<u>r</u>		
FA.		
		i.

伝えるものとする。また、箱の壁の一部を移動させて、箱の体積Vを変化させることができるとする。

- (1) 箱の体積を V から、圧力 P の変化を無視できるほど微小な量 dV だけ準静的等温過程で変化させたとき、気体がする仕事は PdV である。この過程で気体に流入する熱を Q とすると、定義よりエントロピー変化は dS=Q/T である。また、理想気体の定義よりこの過程で内部エネルギーは変化しない。以上より、dS を n、気体定数 R、V を用いて書き表せ。
- (2) 気体の体積が V_a から V_b に変化するときのエントロピー変化をn、R、 V_a 、 V_b を用いて書き表せ。

下図のような体積 V の 2 つの箱が組み合わされ、温度 T の熱浴内に置かれているとする。箱の壁は熱を伝えるものとする。箱 1 の破線で示した壁は理想気体 2 のみを透過し、箱 2 の点線で示した壁は理想気体 1 の

広島大学大学院先進理工系科学研究科理工学融合プログラム (環境自然科学分野) (博士課程前期)入学試験(令和4年1月実施) Transdisciplinary Science and Engineering Program

E	受 ka n	nin	験 ee'	番 s N	号 um	ber	•
M							

(Environmental and Natural Sciences),

Graduate School of Advanced Science and Engineering (Master's Course) , Hiroshima University

Question Sheet	Specialized Subject	General Selection
	anno induced colference leine (1) · 1	, 1 % L 1 \ Z = A - L (17 1 1 1 1 1
·		
T		
-		
		•
Communications, 2016, 7:	 [2402] の概要である。	
Components with self-prop	pelling abilities are important building	blocks of small autonomous systems and
		pulsion criteria. To date, there has been